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ABSTRACT

The capillary instability of a liquid jet carrying an axial
volume current is investigated for vericose deformations (m=0).

It is found that the inclusion of Hall current in Ohm's law leads

to overstability of the jet, albeit with small frequency of

oscillation.
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I. INTRODUCTION

The capillary instability of a liquid jet has been the subject matter
of extensive investigations since the pioneer work by Lord Rayleighl.

It is well kpown that the liquid jet is unstable to all axisymmetric
perturbations having wave numbers (measured in units of the reciprocal
radius of the cylinderical column) less than unity. In an attempt to
provide a liquid scale model of & pinched gas discharge, Dattner, Lehnart
and Lundquist2 have carried out experiments with liquid mercury éolumn
carrying a direct axial volume current and they observe a sausage type
(vericose) instability similar to that of a classical liquid jet.

It has been shown by Chandrasekhar3 that the presence of an axial
magnetic field has a stabllizing influence on the vericose instability of
a conductihg liquid jet. The stability of a capillary jet with axial volume
current has beep discussed by Murtyh who discussed the problém for small

values of the electrical conductivity. Recently Gupta5

has discussed the
stability of a liquid jet with axial volume current with and without the
presence of an axial magnetic field and has compufed the growth rate of
instabilities in several limiting cases for vericose deformations.

The importance of including Hall current in Ohm's law in investigating
the stabllity of hydromagnetic configurations has been pointed out by -
T:a.ylor'6 and Ware7. The effect of Hall current on the stability of a
capillary jet in the presence of an axial magnetic field has been
investigated by Trehan et alB who showed that the inclusion of Hall current
does not lead to overstability in the case of a liquid mercury or sodium Jjet.

Recently Hosking® has shown that the inclusion of Hall current
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leads to overstability in a situation where an infinitely conducting
plasma occupies the half space 0<7Z.e0 and is supported against gravityi
by magnetic pressure due to a jump in the field strength at the plasma
boundary Z=0.

We investié;te here the effect of Hall current on the capillary
instability of a finitely conducting liquid jet carrying an axial volume
current. For the sake of mathematical simplicity we restrict ourselves
to axisymmetric perturbations. It is of interest to note that the

inclusion of Hall current 1éads to overstability of the Jet.

II. FORMULATION OF THE PROBLEM

We consider a static and infinitely long cylinderical liquid jet
carrying a total current I through a cross-section of the jet. The
assoclated circular magnetic field is given by He=Hr/R, r<R, where
H=2I/R and R is the radius of the jet. The fluid is assumed to be
incompressible, inviscid and having a constant density p and finite
electrical conductivity o. The pressure distribution in equilibrium is
obtained from the condition of pressure balance and we find p=T/R
+ (H?/hn) (l-ra/R?) vhere T is the surface tension. We shall restrict
our considerations to the case when the jet is in free space and the
external material pressure can be ignored. The magnetic field exterior
to the jet is given by He = HR/r, r=R.

We now imagine the boundary of the cylinder to be deformed from

r=R to one given by

-
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r=R + ¢ exp (wt + i#2), : (1)
where e, 18 8 constant and we restrict ourselves to axisymmetric (vericose)
deformations (m = o). As a result of the deformation let the various
perturbed quantities be given by

W, ptépendH+h, (2)
vhere U, sp and h are small perturbations in the velocity field, pressure
and m?.gnetic field respectively. We shall assume all the perturbations
to have the form

fx, 2, t) = f(r) exp (at + 1kz). o (3)
The linearized hydromagnetic equations, including the Hall current,

governing - the perturbed quantities then reduce to

o=V 1 + Q%ER (b, So ™ By £.) (%)
and
(0-2285%) 1 = -nyxyg X b, | (5)

where | = Gp/p +E-&/’+np, 'n = l/‘l»‘rp’ and Cl = C/h-nNe ~ H/hnpuh,
We is the ion gyration frequency given by @ = eH/Mc and M is the ion

mass. It is convenient to write Eq. (5) as

Vx ¥ xbtah=0 , | o (6)
(™ e e Wm
vhere 4 '
2 .
- _2ig- a
a = 0 (w. o ) . (7)
and 02 = 422 s ° = [¥mp, x=#R. The solution of Eq. (6) may ve

readily obtained by following the procedure similar to that used by

Taylorlo and we may write

Bemoem. (8)
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where
ZXL{J = GJ .,]:_lj . (9)
From Eqs. (6), (7) and (9), we readily obtain:

2
- i i & .
%,2 i;}; (0 - Xw—'i) , (10)
The solution of Eq. (9) is given by (for m=0)
hZ,J B CJIo (l,jr): : ' (11)
n,  =%% I G, | (12)
8,J 1My '
A
and
£
h = - L '
rg T 1% Y 5, o), (13)
where 2. *2 - o and C!s are the integration consi;ants Since 2 = 2
A3 o ; 8 ' " %’

we get ;\E = .7\2 = A? (séy). Keeping in mind that o, = ~aps We obtain for

the ﬁerturbation in the magnetic field -

i

h, = (€] +C,) I (ar), ‘ : (14)

hn = ?-;'f (cl - ca) I; (ax) » T ‘ (15)
and '

b, = - i—:‘ (€, +6) 1, (r) . , (16)

The perturbation in the pressure is obtained by taking the divergence

~of Eq. (4) and making use of the solonoidal character of W We thus

obtain for the equation governing [I:

yio=-29 (¢ -0c)1 Or). | (17)
2mpR ' .
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The solution of Eq. (17) is given by

- _H -
m=EI () + Srpfay (c, - ¢,) I, (;r) , (18)
where E is the integration constant. From Eqs. (15) and (18), we obtain:
{ o
gfc.-c,) : '
.8:2 = l 2 [ - ' ] ’
EI (4r) + Bmpfay 1, Gr) -3 I (A7) (19)
Finally from Egs. (4), (15) and (18), we find
B (c,-C, # I, (hr) . ~ (20)
_ _E 0 172 1 A '
W =-—1I (#r) - 2=
r w 1 QT pRal)\U)
The perturbation in the vacuum magnetic field is given by
(o) _ .
n'%’ = -hCBKi(hr)er + 1ﬁ05xo(ﬁr) e, - (21)

Further, the change in the surface tension pressure, 8P is known to be

8Pp = - To (147) . | (22)

e
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ITI. THE DISPERSION RELATION

This is obtained as a result of matching the boundary conditions which
are (1) the radial component of the velocity ur at r=R must be compatible
with the assumed form of the deformed boundary given by Eq. (1), (2)
the magnetic fieldua and (3) the normel component of the total stress must

be continuous across the deformed boundary. The first condition leads to

H(c, -C,) X |
Ex .
" 2 I (x) - 2ﬂpYa,?_R2w2 (Y, (23)

vhere Y = 3R. The continuity of the normal component of h gives

I .
- iR 1(4)
while the continuity of the Z-component of h yields
1hc3K°(x) = (c+6,) I(§) . | ~ (25)
Equations (24) and (25) lead to either -
Cs=0 -, €+ Gy =0 | | (26)
or the requirement that
95,8, X (27)
I,y) K (x)

This relation does not correspond to any deformation of the boundary and is
of no interest for the problem at hand. Further, for the physical situation
of interest, namely liquid sodium or mercury the.resistivity is very high
and we can set 3 = X + § where § = R?(w-Qi(?/xwi)/zxn<<x and we can verify

that Eq. (27) leads to a root which is incompatible with this assumption.
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Therefore, we must set C3 =0and C +C, = 0. Thus Egs. (24) and (25)

are satisfied identically. The continuity of the g-component of the
magnetic field at the perturbed boundary requires

he + 2€oH/R =0 . A (28)
The continuity of the normal component of the stress tensor at the deformed

boundary requires

e 2
&p, 0 & I .p.Dp, €& 4 D
0 + 0 dr'ﬂ;aséi"kL np dr =
= &b 2
= T+ € 4 ¥ o »
o By ar 1 8vT =R, (29)

where we have used the superscripts 'p' and 'v' to indicate the plasma
and the vacuum magnetic fields respectively. Making use of the foregoing

relations we obtain after some straight forward calculations the dispersion

relation:
2 .
T N w Io(x) N hAen
—_— - = 2
pR5 (1 - x°) xIl(x) Rh(w-EiQ /ch)

on(x) YIo(g)] '

ST O o0

a) Limit of Infinite Conductivity.

We may first observe that in the 1imit of infinite conductivity -0

“and Eq. (30) reduces to the classical result of Lord Rayleigh;. Thus

in the limit of infinite conductivity, Hall current has no effect on
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the stability of a cylinder carrying an axial volume current. This result
is, perhaps, not surprising as it is known that in infinitely conducting
cases, the inclusion of Hall current in Ohm's law has effect on the
stability of some hydromagnetic configurations while in some cases it does
not. It may, perhaps, be in order to remark here that in the case of

a sheet pinch with trapped axial magnetic field, it has been shown by

Buti et alll that Hall current has no influence on its stability. On the

other hand, it is interesting to note that Hbsking9

has recently reported
a low frequency instability due to the Hall current in a plasma supported
against gravity by a magnetic field.

b) No Hall Current

In the limiting case where the Hall current is neglected, we—® and
Eq. (30) reduces to the form given by Gupta5.

c) High Resistivity Limit.

We now wish to investigate the effect of Hall current in the high

resistivity limit. To this end we may write; correct to second order:

Y= x+s-de /% (51)
where
2 2
- B_ _2iQ o
6 1% (w X0, ) . (32)

and we assume that 5/x<<1. The dispersion relation then reduces to
.l

' . 2
Zasr(a) L) [, 2R )F ]

x;1(x5 ch T -
I (x) |
i (P - st = 0, (53)

vwhere we now measure y in units of (T/pRB) and
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6(x) = 3 I(x) Iy

and

F(x) = 6(x) - Iz(x)/2I]'_ (x)

(33) 1s a quadratic in 52 whose roots to the lowest significant order are:

w = wy + o, , (35)
where ) %
xI
w, = -2NSF(X):!:[4NG(X) + To-g;— (1-x°) ] , (36)
and
(P, )P/’ M)y - - (57)
L7 [awole) + 5 (152) |

It is to be observed here that in the limit when W03 wiqo and W= .
The expression for w, differs from that given by Gupta.5 in the appearance
of F(x) instead of G(x) in his expression in the first term on the
left hand side of Eq. (36). This discrepancy is due to the fact that he
has not carried out the expansion of the dispersion relation consistently
to the second order.

It can be shown that the function F(x) is always positive. When X<l
the quantity under the radical sign in W, is always positive and greater

than 2NSF(x). Since ™ is always finite, the positiveness of W, implies that

we have overstability. Thus the inclusion of Hall current leads to
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overstability of the jet rather than convective instability which is

the case wnen one neglects Hall current.

2
For liquid mercury, *q=7.5><105 cm /sec, p=15.6 gm/cm3 and T=487

' dynes/cm. Teking R=0.2 cm we find that $=0.000178. The behaviour of

Wy and W for various values of N are shown in figures 1 and 2. We
find that the jet is unstable for all wave numbers X less than'xc and

that the instability is maximum for x=x,. The values of X, Xy

and wyx 8Te given in table 1 for some values of N.

IV CONCLUSION
We find that the inclusion of Hall current leads to overstability

of a liquid jet carrying\an axial volume current.
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Values of X, X 8nd (4 for N=1, 2, 3 and L

Xc Xy wo*
1.369999 0.941 0.647
1.629999 1.109 0.923
1.839999 1.239 1.178

2.009998 1.345 1.415
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FIGURE CAPTIONS

Fig. 1. The behavior of w, 88 & function of the wave number X.

‘Fig. 2. The behavior of wi/wo as a function of the wave number x.
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